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Is Japanese music more consonant than Western music?
An application of Leonhard Euler’s music theory

Hermann GOTTSCHEWSKI

1. Introduction

In his last lecture given at Ochanomizu University, Tokumaru Yosihiko mentions that syamisen
(shamisen) players tend to play the second note of the scale a half tone above the key note in the lower octave,
but a whole tone in the upper octave (ex. la). This seems to contradict the rule that musical scales repeat their
tones in each octave. Tokumaru shows, however, that this “irregularity” conforms to a tonal system based on
tetrachords, or, as he calls them, latent units (i f£ H.{\), rather than on octaves. The structure of this scale also
reflects the structure of the instrument and its playing techniques (Tokumaru 2003: 16 - 19, 32).

But this kind of scale is not exclusive to syamisen music. Kumoi dydsi (kumoi-jéshi) for instance, one of
the fundamental koto tunings, shows the same difference between the third/eighth and the last string (ex. 1b). In
gagaku a similar scale can be observed, if the pitches of the hitiriki (hichiriki) and the ryiteki are combined
(ex. lc). Significantly enough, the two instruments, which essentially play variations of the same melody one
octave apart from each other, use the differing tones, i.e., the dissonant interval of an augmented octave, even
simultaneously.

The phenomenon is also not restricted to Japan. In 13th to 16th century European music manuscripts, for
example, frequently a b-flat is found in the key signature of the lower voice(s), but not in the upper
voice(s)<1>. Thus the tone material of these pieces (ex. 1d) is almost the same as that of syamisen music, even

if the keynote is at another place, and the tone progressions are very different from Japanese music.

NB. In example 1 the scales are transposed for comparative purposes: The original gagaku scale is a fifth
higher and the original medieval notation a fifth lower than in this example. The most frequent notes in the
t6gaku piece Seigaiha were calculated by a listening analysis of a recording by the Kunaityo (Kunaichd)
Gakubu (1989), CD KICH 2001. “Most frequent” means used more than 25 times and “frequent” at least five
times throughout the piece. The range of the medieval scale shows a typical case, but in some pieces more or
fewer notes are used. The key note (finalis) of the medieval scale depends on the mode the piece is written in.

In most pieces the finalis is f or g in original notation, i.e., ¢ or d in the transposed scale.
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The most frequently used pitches in sya- The koto-tuning kumoi-dyosi.
misen music (hon-tyési) after Tokumaru.
Whole notes show the “nuclear tones”.

)

Frequently used tones by the hitiriki and ryite- A typical tone material of a European
ki in bansiki-tyé (banshiki-ché) Seigaiha. The vocal piece of the 13th-16th century,
most frequent tones are marked as whole notes. ~ written for three voices.

Ex. I. Broken slurs indicate perfect fifths. The asterisk (*) indicates the key note (finalis) or, in the case of the medieval scale,

possible key notes.

It is obvious that all of these scales came about under special conditions, including peculiarities of the
instruments and playing techniques as well as the historical development of musical language. The explanation
of these scales in music theoretical terms will accordingly be different for each of the scales. It may be asked,
however, if the phenomenon in its most general sense — a diatonic or pentatonic scale that has a sharp (or
natural) in the upper octave(s) where a natural (or flat) is found in the lower octave(s) — has a more general
explanation.

It seems that the phenomenon has something to do with consonance between scale notes. In most cases the
alteration increases the number of perfect fifths (see broken slurs in ex. 1). But why is an octave as the most
consonant interval sacrificed for the sake of a fifth, which is less perfect? And why, if fifths are desirable, a
koto tuning like kumoi-dydsi is possible, which has no perfect fifths in the middle register? And why is the
eleventh string in hira-dydsi (the most common koto tuning, see below exx. 6 and 7) not sharpened as the
thirteenth string is in kumoi-dyési?

To answer these questions, not only particular consonance relations, but the consonance of the whole
system must be taken into consideration. Consonance, in general, refers both to tones that are played in
succession and to those that are sounded together in a chord, and it means that they “fit together” in some way.
Consonance of a whole system therefore refers to how much the tones are in an order which makes them all fit
together. Thus it concerns sound possibilities and imagination rather than a specific sound effect. Although
traditional music theory tends to consider only a few categories of consonance (e.g., “perfect consonance”,
“imperfect consonance”, and “dissonance” in counterpoint theory), there exist many grades (and perhaps sorts)
of “fitting together”, and there is no definite borderline between consonant and dissonant tone relations.

It may be doubted whether or not consonance of a whole system is a one-dimensional unit of
measurement. The mathematician Leonhard Euler (1707 - 1783), however, developed a very refined music
theory<2> that attributes any tone system a grade of suavitas (sweetness) expressed by a natural number and
closely related to the grade of consonance. Despite its restrictions (mainly because it is a pure mathematical

theory that does not refer to the acoustical properties of real sound or the physiology of hearing), it reveals
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some effects of tone combinations that are hardly ever explained by any other music theory. In fact, the theory

is also able to give a satisfying answer to our problem of scales.

2. Euler’s music theory

Euler’s music theory is based on only a few fundamental statements:

(1) Suavitas is formed from simple ratios between the frequencies of tones; thus an octave (frequency ratio
1 : 2) is more suavis than a fifth (frequency ratio 2 : 3) just because the ratio between the numbers 1 and 2 is
simpler than that between 2 and 3. The grade of suavitas (gradus suavitatis, GS) is therefore a “grade of
simplicity of ratio”. Because simple things are easy to comprehend, it could also be called a “grade of
comprehensibility”. The GS is counted by natural numbers from the simplest, i.e., the unison (GS = 1), to the
incomprehensible (GS = ©0) and can be calculated for any set of frequencies<3> that are in rational
relation<4> to each other. (Note that for GS the first grade means the highest suavitas and a greater number
means a lower gradus suavitatis')
(2) Musicians like to create complex systems that are difficult to understand. Listeners like (perhaps
unconsciously) to search for the order in such systems, and they are satisfied by finding it. Thus listening to
music can be compared to solving a puzzle: If it is too easy or too difficult, the listener will be discontented.
Good music, accordingly, must have a certain grade of difficulty that depends on the ability of the listener.
(Euler says in the preface, p. 7, that this is the reason why we don’t like the music of the “barbarians™ and vice
versa.)
(3) There are some methods to enable a listener to understand more complex structures. The structure, for
example, can be presented more often. Thus

(a) tone relations between higher notes are easier to understand than between lower notes, because more

vibrations affect the ear, and
(b) in slow movements more complex harmonies are possible than in quick movements, and lower voices
need slower tone movements than higher voices (Euler 1739: 11, 20).

More important is, however, to decompose complex structures into simpler units that are related to each other.
If the units and their mutual relations are comprehended, the complex structure becomes comprehensible as a
whole. This process goes through several levels: The tones in a chord, the relation between two chords, the
chords in a phrase, the relation between two phrases, a group of phrases, and so on. The harmonies in a musical
phrase, for example, constitute a musical key, and the keys used in a piece create the tone system the piece is
based on. Through a skilled arrangement of harmonies and phrases, great composers are able to lead the
listener to the comprehension of very complex structures (Euler 1739: VI, 12 - 15).

Scales, modes and tone systems can be regarded as steps in this process from simple to complex
structures.

I will give a short outline of how from these fundamental statements a mathematical theory was
formulated that enables us to evaluate the consonance and musical quality of a tone system.

The grade of simplicity, or gradus suavitatis, is first developed for single natural numbers. The simplest
number is 1. Thus it is defined:

GS(1)=1 [1]
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Prime numbers cannot be further divided, so their simplicity depends only on their size. Thus it is defined:
GS(p) = p, if p is prime. [2]
A product mn is less simple than 7 in the same degree, as m is less simple than 1; i.e.,
GS(mn) — GS(n) = GS(m) — GS(1), or
GS(mn) = GS(m) + GS(n) — 1. (3]
That means, for example, that doubling a number makes its suavitas one degree lower, i.e., it increases the GS
by one, because 2 is prime and therefore GS(2) = 2:
GS(2n) = GS(n) + GS(2) - 1 =GS(n) + 1. [4]
Every natural number can be expressed as a unique product of primes. Multiple application of [2] and [3] leads

to the general formula for calculation of the GS of any natural number expressed by its prime factors p , p,, ...

Py
GSp, p,p)=p +p,+..+p —(k=1). [S]
To give a few examples:
GS(1)=1,GS(2)=2,GS(3)=3 (see [11, [2])
GS(6)=GS(3)+1=4 (see [4])
GS(60) =GS(2-23-5)=2+2+3+5-3=9 (see [5])
GS(360) = GS(6) + GS(60) -1 =12 (see [3])

It is also possible to calculate the last example from the prime factors of 360 using [5]. The result will be the
same, of course.
The GS for ratios between two natural numbers is calculated as follows. The ratios n : 1 and 1 : n have the
same simplicity as the number # itself, i.e.,

GS(1:n)=GS(n:1)=GS(n). [6]
Because of m : n=(m : 1) - (1 : n), similar considerations as that which led to [3] give the following (using [6]
and [3]):

GS(m :n)=GS[(m:1)-(1:n)]=GS(m: 1)+ GS(l : n) — 1 =GS(m)+ GS(n)-1

= GS(mn),
but this is only true if m and n are coprime<5>. Otherwise the ratio must be simplified first, and the suavitas
will be higher, as, e.g., for GS(6 : 3) = GS(2 : 1) = 2. Thus the general formula for ratios of two natural
numbers is:

GS(m : n) = GS(mn), if m and n are coprime, [7]
and the GS(mn) can be calculated using [5].

The ratio of the twelfth (octave-and-fifth, 1 : 3), for example, is as simple as that of the interval of two
octaves (1 : 4), because GS(3) = GS(4) = 3. The ratio of a minor sixth (5 : 8) is as simple as that of the major
second (8 : 9), because GS(5:8)=GS(8:9)=8.

The real comprehensibility of these intervals, however, depends on their real frequencies (see statement
(3)(a) above). While the comprehensibility of a single tone depends on the frequency of the tone itself, it must
be assumed that the comprehensibility of a consonant sound depends from the repetition frequency of the
vibration pattern that the consonance produces. If, for example, the minor sixth is given by the frequencies
400 Hz and 640 Hz (= 5 : 8), only the major second given by the frequencies 640 Hz and 720 Hz (= 8 : 9) will

have the same frequency of repetition. The major second 400 Hz and 450 Hz (= 8 : 9) repeats in a slower
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pattern and thus is less consonant, as seen in the following graph<6>:
5 : 8 (minor sixth, 400 Hz and 640 Hz) o
ket bt T, 7o ey €30 R b V0 0
8 : 9 major second, 640 Hz and 720 Hz) .
e | ST E MM PP i
89 (major second, 400 Hzand 450 Hz)
| repeasdpatm | o Mt

That 5 : 8 and 8 : 9 have the same GS means that the two patterns as such are equally easy to comprehend. But
the pattern 8 : 9 contains more vibrations than the pattern 5 : 8. Thus despite having the same GS, a major
second is less comprehensible (i.e., less consonant) than a minor sixth, unless it is played with higher
frequencies<7>. That intervals become more consonant when they are played with higher pitches can easily be
verified on any instrument. Unfortunately Euler does not say how much the degree of consonance is increased
by a frequency rise<8>.

Musically, the prime factorization of the interval relations can be described as a decomposition of
compound intervals into elementary intervals. Only the intervals 1 : p and p : 1 are regarded as elementary. I
will therefore call them “prime intervals”. The fourth 3 : 4 with GS 5, for example, will be comprehended by
going down a twelfth (3:1) and twice going up an octave (1 : 2). These three steps can be done in any order.

Thus a fourth will create a system of two explicit and four implicit tones (ex. 2).
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Ex. 2. The “tone system” created by a fourth and the tone relations by prime intervals

As the four tones A, a, €%, ¢’ are already implied by the fourth ¢'-a', the system will not become more
complex if one or several of the implied tones are added. Thus the hon-tyési tuning of the syamisen e¢'—a'—¢*
and the niagari-tyési a—e'-a' equally have the GS 5. But again, the consonance of the two tunings is equal only
if the second string of the niagari is the same pitch as the first string of the hon-rydsi. If, as usual, the tuning of
the syamisen is changed from hon-tydsi to niagari by raising the second string, the consonance of the three
strings becomes greater.

If all implicit tones are added to a given consonance, Euler calls it a complete consonance. The lowest
tone of a complete consonance is represented by the number 1, the highest tone by the least common multiple
of the other tones, which is called the exponent by Euler. If a consonance consists of all divisors of a certain
number (including 1 and the number itself), it is a complete consonance, and the certain number is its exponent.
The GS of the consonance is given by the GS of its exponent. In ex. 2 the exponent is 12 and the divisors are 1,
2,3,4,6.

So all sets of tones represented by coprime numbers can be enlarged to a complete consonance by adding
the least common multiple and all its divisors, and the GS for any set of coprime numbers is given by the GS of

their least common multiple.
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3. The suavitas of pentatonic scales
The pentatonic scale g-a—c'-d'-e'—g', if created by the circle of fifths, is represented by the ratios
48 : 54 : 64 : 72 : 81 : 96; its exponent is 2°3* = 5184, the GS is 15, and its complete consonance will appear as

shown in ex. 3.

“ritu” scale: kyusyokaku ti u kyi
“min’y6” scale: re fa so la do re
“yonanuki” scale: 5 6 1 2 3 5 6

Ex. 3. The complete consonance of exponent 2°3* = 5184 (GS 15) and the prime interval relations between its tones. As in
ex. 2, the exponent contains two different prime factors. Thus the tones are distributed in a two-dimensional go-board-
like space. The tones are spread over a large area, because the highest tone has the 5184-fold frequency of the lowest
tone. Both are out of audible range. Only the most middle octave, however, contains the full pentatonic scale. To have
the full scale through more octaves, the exponent of the prime-factor 2 has to be raised, and the GS will rise

accordingly. The lower system shows a section of musically usable tones (see Euler 1739: VIII, 5).

Although the pentatonic system shown in ex. 3 seems very consonant, even more consonant pentatonic
systems can be achieved, if the pure seventeenth (two-octaves-and-third, 1 : 5) is introduced. In fact, already
the system with exponent 2*3%.5 = 720 and GS 13 contains two pentatonic-like structures, one in the lower
range (F-G-A—c—e—f-g—a—c'-¢') and one in the upper range (c'-e'-g'-a'-h'-c*~e’~g*>~a’~h?), but they are
musically not very usable, because there are two thirds in succession. If, however, a further octave is added,

both the so-called “Ryiky scale” and the “miyakobusi” scale are part of the complete consonance (ex. 4).
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“Ryitkyti scale”: do mi fa so si do
“miyakubusi” scale: mi fa la si do mi

Ex. 4. The complete consonance of exponent 2°-3%.5 = 1440 (GS 14). The tones are distributed in a three-dimensional space

because the system comprises three different prime factors.

From Euler’s calculation it follows that miyakobusi, the most fundamental pentatonic scale for Japanese
traditional music, has the GS 14 and is thus, as a system, more consonant than the pentatonic scale shown in ex. 3.
This, however, is true only if we consider the major thirds c—e and f-a to be pure thirds (4 : 5), at least in
principle. This seems to contradict the theory of gagaku but is in accordance with the measurements of Uehara
Rokusird for the miyakobusi scale<9>. In fact, it is well known that the theory of gagaku does not reflect the
actual consonances used in that music<10>. And that the thirds are pure intervals “in principle” does not
necessarily mean that they require just intonation. (Also in modern Western music triads are seldom played
with pure intonation, but most theorists believe that the frequency relation of 4 : 5 : 6 is constitutive for the
major triad.) Euler’s theory thus is a strong argument for the opinion that the major thirds in both the

miyakobusi and the Ry{lky{ scale are recognized as consonant intervals by Japanese listeners.

4. Comprehensibility and complexity

Euler assumes that people like trying to comprehend complex structures (statement (2) above). Comparing
ex. 3 and ex. 4, however, it seems that “more complex™ is not synonymous with “less comprehensible”:
although the complete consonance in ex. 3 is less comprehensible, because it has a lower suavitas, it seems to

be not more complex as a structure. To give a more striking example: Certainly a fourth, which implies the
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structure shown in ex. 2, is more complex than a pure seventeenth (C—e'), which is an prime interval (1 : 5) and
thus does not imply any other tones. The comprehensibility (i.e., the GS) of both intervals, however, is the
same, because the fourth is a compound of simpler prime intervals.

Unfortunately, Euler doesn’t give any definition for complexity, although the concept of complexity is

important for his theory. So I will give a simple definition here:
Def.: A structure is more complex if its complete consonance contains more tones.

Thus the structure of ex. 4, which contains 36 tones, is slightly more complex than the structure of ex. 3,
which contains 35 tones, and the structure shown in ex. 2 with six tones is much more complex than a
seventeenth with only two tones.

If Euler is right that musicians try to build the most complex structures that a listener is able to
comprehend, and if comprehensibility is given by the GS, it is important to know the most complex structures
(i.e., the structures with the greatest number of tones) that are possible for a given GS. I will call such a
structure an optimal complex system. Because a certain GS allows only a finite number of exponents, it is easy
to find the optimal complex system(s) for that GS. The following list gives all optimal complex systems for GS
3 to 22. (For GS 1 and GS 2 there is only one exponent each and thus the systems are a priori optimal. Optimal
complex systems with GS>22 all use the prime number 7 and are therefore not compatible with tone systems

used in Western or Japanese traditional music<11>).

radus suavitatis (GS exponent number of tones
3 22=4 3
4 23=6and23=8 4
5 223=12 6
6 233=24 8
7 243 =48 10
8 2332=172 and 253 = 96 12
9 21:32=144 15
10 2532 = 288 18
11 2632 =576 21
12 23325 = 360 and 25-35 = 480 and
2533 = 864 and 2732 = 1152 24
13 21325 =720 30
14 25325 = 1440 36
15 26325 = 2880 42
16 25335 = 4320 and 2735 = 5760 48
17 26335 = 8640 56
18 27335 = 17280 64
19 28335 = 34560 72
20 27315 = 51840 and 29335 = 69120 80
21 28315 = 103680 90
22 29315 = 207360 100

Optimal complex systems for GS 3 to 22
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Clearly the systems in ex. 2 and ex. 4 are optimal complex systems, but not the system in ex. 3. For use as
a musical scale the optimal complex system for GS 17 is particularly interesting, because it contains a diatonic

scale through the full range of human voices (ex. 5).
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Ex. 5. The complete consonance of exponent 2°3%.5 = 8640 (GS 17). It is one of the optimal complex systems.
P

In the lower two octaves the scale has only natural notes, but in the upper two octaves it has f-sharp
instead of f. If transposed one octave upwards, the scale contains all notes shown in the scales of ex. 1. In fact,
all scales given in ex. 1 have the same exponent, 2°3%.5 = 8640, and therefore the GS 17. From the perspective
of Euler’s theory, therefore, the only difference between the four scales is which tones are used and all
represent the same complete consonance. It even makes no difference whether the real scale is pentatonic, as in
ex. 1 (b), or heptatonic, as in exx. 1 (a), (b) and (d), because all other notes are part of the complete
consonance.

So, astonishingly enough, traditional Japanese musicians as well as medieval Western composers have
invented the most perfect diatonic scale possible. Why did later Western composers give up that system? Euler
recommends building instruments that can play all scale notes in all octaves for practical reasons (Euler 1739:

VIII, 5), although he does not think that it is good to use all these notes without distinction in a composition.
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But transposability, use of modulations and singing in octaves may have been the reasons that the concept of

consonance was partly given up in Western music.

5. The musico-geometrical construction of the exponent of a given tone set

While the mathematician Euler mainly uses ratios, calculations and concepts of number theory to find
solutions for musical problems, musicians or music theorists may prefer to operate with prime intervals (i.e.,
octave, twelfth, and seventeenth) and two- or three-dimensional geometrical structures as shown in exx. 2 - 5.
The set of divisors of a given exponent 2*-3"5", for example, finds its embodiment in a parallelepiped with
octaves, [ twelfths, and m seventeenths as its edges. Conversely the exponent of a given set of tones can be
found if the tones are connected together with prime intervals in some way, and the emerging structure is en-
larged to a parallelepiped. The nine common pitches of hira-dydsi and kumoi-dydsi (if the first string of hira-
dyési is tuned to e' and that of kumoi-dyési to h), for example, unfold a complete consonance of six octaves,
two twelfths and one seventeenth (i.e., with exponent 2°3%5), as shown in ex. 6. This is the optimal complex
system for GS 15. Four of the other pitches in the tunings (a* and h* in hira-dyési and e and f in kumoi-dydsi)
are already part of the complete consonance and thus do not raise the GS if they are added. The two notes £ (in
hira-dyési) and f-sharp® (in kumoi-dydsi), however, are not in the complete consonance, so they lead to an
enlargement of the system, as can be easily seen in the example. In hira-dydsi, there appears an additional
octave, and the exponent of the system becomes 27-3%-5 (GS 16). In kumoi-dyési a twelfth is added, and the
exponent of the system becomes 2%35 (GS 17), as already seen in ex. 5. The resulting complete consonances

are both optimal complex systems.
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Ex. 6: Hira-dyési and kumoi-dyési. Common and different pitches and their complete consonances according to Euler’s
theory

From this example, however, it seems there is no reason to add the sharp in kumoi-dyosi, because the
tuning without the sharp (which is also used in kofo music and is called hon-kumoi-dydsi, i.e., the “proper”
kumoi-dyési) has a higher suavitas. And it seems also that the effect of sharpening the eleventh string of hira-
dyosi would have exactly the same effect as sharpening the thirteenth string in kumoi-dyési.

But this is true only if we consider the two tunings in isolation. In fact, in kofo music the tunings are tied
together by tuning changes that are made during a piece. If a tuning change is done from hira-dydsi to kumoi-
dyosi, the koto will not be tuned down as in ex. 6, but only the strings 3, 4, 8, and 9 will be changed<12>. The
result is a change of tonality. If two or more tonalities follow each other, according to Euler the change can
only be comprehended if the systems are understood as subsets of a super-system. Therefore we have to
consider the complete consonance that includes both tunings.

It is our aim to discuss the tuning of the uppermost three strings in both tunings. Hence, as the first step,
we will consider the super-system that is unfolded by the first ten strings of both tunings. The system has the

exponent 2%.3%.5 and represents the optimal complex system for GS 19. As ex. 7 shows, the complete
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consonance contains already the tones ¢?, d, €%, f-sharp’, g% and @°, but not the tones c-sharp® and f°. So the
tones ¢?, ¢?, and f-sharp® can be added without increasing the GS of the whole system, but the GS would
increase if the 13th string of kumoi-dydsi were tuned to f* or the 11th string of hira-dyési to c-sharp®. It can thus
be assumed that the properties of both tunings were developed to get more consonance in the super-system in
which the tunings are embedded, or, in other words, to make the modulation between both tunings more

comprehensible.

O = the first 10 strings of both tunings
O = the last 3 strings of both tunings
o = other tones of the complete

consonance

kumoi-dyosi
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Ex. 7: The super-system 28-3%:5 for the modulation from hira-dyési to kumoi-dyési, and, indicated by bold lines, the
subsystems 2°-3%.5 (kumoi-dyosi) and 27-3%5 (hira-dyosi). The super-system is already implied by the first ten strings
of both tunings.

6. Conclusion
The concept of optimal complex systems introduced in this paper according to the principles of Euler’s
music theory is particularly useful to explain the properties of Japanese tunings and scales. It was shown at

several levels that Japanese tone systems achieve the greatest possible consonance as defined by “the highest
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possible complexity at a certain grade of comprehensibility”. The hon-tyési and niagari-tyosi of the syamisen,

the hira-dyosi and kumoi-dyési of the koto, and the super-system that contains the modulation from hira-dydsi

to kumoi-dydsi all represent optimal complex systems<13>. It would be easy to demonstrate that the tunings of

violins, lutes, guitars, pianos and so on do not represent such systems.

Maybe it sounds strange that a European music theorist of the 18th century, who did not know any

Japanese music, was able to find fundamental principles that are more suitable to explain Japanese than

Western music. It was possible, however, because his music theory was based not on musical experience but on

a theory of comprehension that is based on elementary mathematical principles.

Certainly music cannot be reduced to the question of comprehension and solving puzzles. But

comprehensibility is an important aspect of every form of communication. Why should the Japanese, who

refined their music over several hundred years in a steady tradition of listening and performing, not have

achieved a higher level of comprehensibility than the European composers, who tried to make a new theory for

every piece?
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Notes

1

See Apel 1981: 108. Examples for this practice are found in the same book in facsimiles 23, 28, 31, 32,
39, 41, 66, 72, 82, 84, 85, 86.

Euler 1739. Because there are various editions and translations, for the citations the chapter and paragraph
numbers are used. For this paper a copy of the original edition was used. For an overview and bibliography
on Euler as music theorist see Gottschewski 2001.

In fact, Euler’s theory of consonance is not restricted to tone relations but may also explain rhythmical and
visual phenomena. (At least Euler believed so.)

According to Euler, irrational frequency relations are not perceptible at all. If tempered or detuned intervals
are recognized as something, it is through adaptive listening: The intervals are perceived as in a rational
relation that is near to the irrational relation presented.

Coprime means that the greatest common divisor of two or more numbers is 1.

A similar graphic representation is used by Euler in a tabula to cap. II, § 21.

7 This is a compelling conclusion from Euler’s fundamental statements, but Euler did not draw it. (Rather he
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tries to find an explanation for the difference in consonance in compositional practice; see cap. IV, § 14 -
15.) Thus it was frequently overlooked, and GS was identified with consonance. So it was wrongly
criticized that Euler’s theory leads to the consequence that the major triad (4 : 5 : 6) and the minor triad
(10 : 12 : 15) are equally consonant. This is only the case if the real frequency ratio between the roots of the
two triads is 4 : 10. It follows that the minor triad is less consonant if the two chords are played in the same
pitch range.

I don’t see that there is any statement in Euler’s theory that could lead us to a measure for that, but at least
it can be said that the rise of one octave increases the consonance by not more than one degree, because

otherwise an octave would be easier to comprehend than its upper tone alone.

9 See Uehara 1895, chapter 23.

In theoretical writings on gagaku a circle of pure fifths is described that begins ascending from d (itikotu,
ichikotsu) and ends with g (sddyd, sojo). Thus theoretically g—d cannot represent a consonant interval. In
practice, however, it is a fundamental consonance in modes like s6dyé and in some instrumental tunings.
Euler proposed an enlargement of our 12-tone system by 12 additional tones to make the use of the natural
seventh possible, but only a few composers in the 18th and 20th centuries tried to compose pieces with
such a tone system. See Gottschewski 2001.

Normally the change will go through another tuning as kata-kumoi-dydsi or han-kumoi-dydsi, which are
called “half” kumoi, because some of the strings are as in hira-dydsi and others are as in kumoi-dydsi.

Also many of the other tunings and modulations of Japanese instruments unfold optimal complex systems:
The most important tunings and modulations of the syamisen, namely sansagari (2*-3%, GS 9; this system
already implies the possibility of retuning the first string down to niagari or the third string up to hon-
tydsi), the modulation from hon-tydsi to niagari by raising the second string (2*-3%, GS 8), and the
modulation row hon-tydsi, niagari, sansagari by subsequently raising the second and first strings (2°-3°,
GS 12); almost all koto tunings, including nizyi-kumoi-dydsi and nakazora-dydsi (both as hira-dydsi
27.3%5, GS 16), kokin-dyosi (2-3%-5, GS 18), and akebono-dyési (27-3*5, GS 20); and most biwa tunings,
as for example four of the six tunings of the gaku-biwa: itikotu-tyé (2*-3%, GS 8), hyddyd, sédyd, and suity6
(all 2*3%, GS 9).
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